MICROMOTORS | CORELESS DC MOTORS | SVTN B 01-2225-24-D-OM

Coreless DC Motor

High Power Density - High Efficiency - High Reliability Low Inductance - Low Inertia - Good Heat Dissipation Long Operational Lifetime - Cost Effective - No Cogging

Feature

	SVTN B 01-2225-24-D-OM
Nominal voltage	24 V
No load speed	7800 rpm
No load current	6 mA
Nominal speed	6474 rpm
Nominal torque	3.440 mNm
Nominal current	0.120 A
Stall torque	20.200 mNm
Stall current	0.700 A
Max. efficiency	82.300 %
Terminal resistance*	34.290 Ω
Terminal inductance*	0.800 mH
Torque constant	29.130 mNm/A
Speed constant	325 mNm/V

Notice: The provided technical data are the higher limits recommended in static condition. To obtain the correct dimensioning of the product, it is necessary to hold account of all the applicable dynamic forces, including the inertia of the manipulator, the configuration of the tools and the external forces applied.

2 POLE BRUSHED DC MOTORS

	SVTN B 01-2225-24-D-OM
Speed/torque gradient	385.80 rpm/mNm
Mechanical time constant	11.840 ms
Rotor inertia	2.930 gcm²

The specific design construction of a coreless DC motor provides several advantages over the traditional, iron core, technology. A first added value it is given by rotor lower mass and inertia, so very rapid acceleration and deceleration rates are possible. Furthermore, the lack of iron reduces "iron losses" to provide higher efficiencies (up to 90 percent) than traditional DC motors. Last, but not least, the coreless design reduces winding inductance, so sparking between the brushes and commutator is reduced, increasing motor life and reducing electromagnetic interference (EMI). Our Coreless DC Motors are available on a wide range of sizes and we can show high flexibility on custom requirements.

Winding technology without metal bodies

Good heat dissipation and high overload capacity

Long life expectancy

Light and compact, easy integration

High reliability

Good return on investment

